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Time-dependent simulation of temperature field in SPS 
by the use of a PID temperature controller  

in a coupled thermoelectric finite element model 

Introduction : The purpose of this study is to create a numerical model able to reproduce the dynamic thermoelectric behaviour of the SPS process. This model should allow to analyse the 
temperature field as a function of time. In the real machine, the controller is configured so as to follow the reference temperature cycle introduced by the operator. In the same way, we implement 
a temperature PID controller in the coupled thermoelectric finite element model of the SPS machine. Simulation results are compared with recordings coming from the real SPS machine. 
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Validation : comparison between model (FEM) and experimental (Exp) results - Sintering of alumina compacts  
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Coupled thermoelectric FEM model PID temperature controller 
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Fourrier-Kirchhoff law  

 

Ohm law :  
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Transfer function : 
series formulation 
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Integrodifferential 
equations  

Mathematical forms of PID controller 
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Transfer function : 
parallel formulation 
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Graphite tools : Temperature 
dependence of thermic and 

electric characteristics 

0.35 mm Graphite foil  

 anisotropy   

  and k = diagonal tensors.  

Al2O3 

Contact between objets : electric 
and thermic contact resistances  

Contact with water cooled electrode 
=> constant temperature 

Axial hole and external surfaces  
surface to surface and surface to 

ambiance radiation heat exchange 

External surfaces => 
Electric insulation 

The source of the electric problem is 
the effective potential difference 

between electrodes 

Feedback temperature = mean 
temperature at the bottom 

surface of axial hole 
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Boudary conditions and 
specific domain characteristics 

Process in vaccum  
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Configuration of solver :  •  Time-dependent solver 
•  Segregated solver : (1) PID controller DAEs  
                        (2) Electric PDEs  (3) Thermic PDEs 
•  Inside time step : repeating of segregated solver 

until convergence 
 

Parametrization of PID controller : To get with the FEM model the same 
dynamics as in real machine recordings. 

Conclusions 
• Reproduction of real thermal behaviour of SPS  Successful implementation of 

PID temperature controller in coupled thermoelectric FEM of SPS 

• Good results compared to experimental measures   Validation of model 

• It allows  to study dynamic evolution of temperature field in compact 

                      to understand evolution of heat fluxes in function of time 

Perspectives 
•  Taking into account characteristic changes with 

relative density 

• Application : Optimization of sintering 
conditions (design of tools, temperature cycle) 

18 mm 
20 mm 

6 mm 

FEM feedback 
temperature  

T. Vanherck1, J. Lobry1, M. Demuynck2, F. Cambier2 

 

1 : Service de Génie Electrique – Faculté Polytechnique – Université de Mons, 31 Bd Dolez 7000 Mons  Belgium 
2 : BCRC, Belgian Ceramic Research Centre (member of EMRA), Avenue Gouverneur Cornez, 4 B-7000 Mons, Belgium  

Contact : thierry.vanherck@umons.ac.be 

mailto:thierry.vanherck@umons.ac.be

