Time-dependent simulation of temperature field in SPS
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Introduction : The purpose of this study is to create a numerical model able to reproduce the dynamic thermoelectric behaviour of the SPS process. This model should allow to analyse the
temperature field as a function of time. In the real machine, the controller is configured so as to follow the reference temperature cycle introduced by the operator. In the same way, we implement
a temperature PID controller in the coupled thermoelectric finite element model of the SPS machine. Simulation results are compared with recordings coming from the real SPS machine.
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Mathematical forms of PID controller
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Parametrization of PID controller : To get with the FEM model the same
dynamics as in real machine recordings.
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Validation : comparison between model (FEM) and experimental (Exp) results - Sintering of alumina compacts

Reference temperature cycle, feedback
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Conclusions Perspectives

* Reproduction of real thermal behaviour of SPS =2 Successful implementation of * Taking into account characteristic changes with
PID temperature controller in coupled thermoelectric FEM of SPS relative density

* Good results compared to experimental measures =2 Validation of model * Application : Optimization of sintering
* It allows = to study dynamic evolution of temperature field in compact conditions (design of tools, temperature cycle)

=» to understand evolution of heat fluxes in function of time
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